Vol.-1. No.-1. PP-108-112 YEAR-2013

EQUATIONS OF GEODESICS IN A TWO-DIMENSIONAL FINSLER SPACE WITH SPECIAL (α, β) METRIC

□ Arun Kumar Ojha

INTRODUCTION:

. The geodesic equation in a two-dimensional Finsler space is given by the differential equation of the Weierstrass form. In the year 2000 Matsumoto and Park express the differential equations of geodesics in a two dimensional Finsler space with a generalized Kropina metric. The purpose of present paper, we express the differential equations of geodesics in a two-dimensional Finsler space with special (α, β) metric is of the form

$$L = \alpha + \beta + \frac{\beta^2}{\alpha - \beta} .$$

Mathematical Subject Classification: - 53B40, 53C40.

Keywords: -Finsler space, geodesic equations, (α, β) – metric, Weierstrass form, two dimensional Finsler space.

1. Introduction:-

In the year 1997 Matsumoto and Park [1] obtained the equation of geodesics in two dimensional Finsler spaces with the Randers metric $(L = \alpha + \beta)$ and the Kropina metric $L = (\alpha^2/\beta)$, whereas in 1998, they have [2] obtained the equation of geodesic in two-dimensional Finsler space with the slope metrics, i.e. Matsumoto metric given by $L = \alpha^2/(\alpha - \beta)$, by considering β as an infinitesimal of degree one and neglecting infinitesimal of degree more than two they obtained the equations of geodesic of two-dimensional Finsler space in the form y'' = f = (x, y, y'), where (x, y) are the co-ordinate of two-dimensional Finsler space.

The study on the differential equations of geodesics in a two-dimensional Finsler space $F^2 = (M^2, L)$ with an (α, β) -metric is interesting and useful. The geodesics of F^2 are regarded as the curves of an associated Riemannian space $R^2 = (M^2, \alpha)$ which are bent by the differentia 1-form β . Recently, M. Matsumoto and the first author ([9]) have expressed the differential equations of the geodesics in two-dimensional Randers spaces and Kropina spaces in the clearest formy f'' = f(x, y, y').

The purpose of the present paper is devoted to studying the differential equations of geodesics in a two-dimensional Finsler space with special (α, β) metric.

2. Preliminaries

Let $F^2 = (M^2, L)$ be a two dimensional Finsler space with a Finslermetric function $L(x^1, x^2; y^1, y^2)$. We denote $\frac{\partial f}{\partial x^i} = f_i, \frac{\partial f}{\partial y^i} = f_{(x)}(i = 1, 2)$ for any Finsler function $f(x^1, x^2; y^1, y^2)$. Here after, the suffices i, j run over 1, 2.

Since $L(x^1, x^2; y^1, y^2)$ is (1) p-homogeneous in (y^1, y^2) we have $L_{(f)(i)}y^i = 0$ which imply the existence of a function, so called the

Weierstrass invariant $W(x^1, x^2; y^1, y^2)([4], [8])$ given by

$$(2.1)\frac{L_{(1)(1)}}{(y^2)^2} = -\frac{L_{(1)(2)}}{y^1y^2} = \frac{L_{(2)(2)}}{(y^1)^2} = W(x^1, x^2; y^1, y^2)$$

In a two-dimensional associated Riemannian space $R^2 = (M^2, \alpha)$ with respect to $L = \alpha$ and $\alpha^2 - a_{ij}(x^1, x^2)y^iy^j$, the Weierstrass invariant W_r of R^2 is written as

$$W_r = \frac{1}{\alpha^3} \{a_{11}a_{22} - (a_{12})^2\}.$$

Further L_i are still (1)p-homogeneous in(y^1 , y^2), so that we get

$$(2.2) L_{I(i)}y^i = L_i$$

The geodesic equations in F^2 along curve $C: x^i = x^i(t)$ are given by [1]

$$(2.3) L_i - \frac{dL_{(i)}}{dt} = 0$$

Substituting (2.2) in (2.3), we get

$$(2.4) L_{1(2)} - L_{2(1)} + (y^1 \dot{y}^2 - y^2 \dot{y}^1)W = 0$$

which is called the Weierstrass form of geodesic equation in $F^2([8],[9])$, where $\dot{y}^i = dy^i/dt$. For the metric function $L(x,y;\dot{x},\dot{y})$, (2.4) becomes to

(2.5)
$$\frac{\partial^2 L}{\partial \dot{y} \partial x} - \frac{\partial^2 L}{\partial \dot{x} \partial y} + (\dot{x} \ddot{y} - \dot{y} \ddot{x}) \frac{\partial^2 L}{(\partial \dot{y})^2} = 0$$

Let $\Gamma = (\gamma_{jk}^i(x^1, x^2))$ be the Levi-Civita connection of the associated Riemannian space R^2 . We introduce the linear Finsler connection $\Gamma = (\gamma_j^i k, \gamma_0^i j, 0)$ and the h- and c-covariant differentiation in Γ^* are denoted by (; i, (i)) respectively, where the index (0) means the contraction with y^i . Then we have $y_{:j}^i = 0$, $\alpha_{:i} = 0$ and $\alpha_{(i):j} = 0$.

On other hand, from (3.1) we have

(3.4)
$$L_{(i):i} = L_{\alpha\beta} \beta_{:i} \alpha_{(i)} + L_{\beta\beta} \beta_{:i} b_{i} + L_{\beta} \beta_{:i} b_{i:i}.$$

Similarly to the case of $L(x^1x^2; y^1y^2)$ and $\alpha(x^1, x^2)$, we get the Weierstrass invariant $w(\alpha, \beta)$ as follows:

$$(3.5) w = \frac{L_{\alpha\alpha}}{\beta^2} = -\frac{L_{\alpha\beta}}{\alpha\beta} = \frac{L_{\beta\beta}}{\alpha^2}.$$

Substituting (3.5) in (3.4), we have

$$(3.6) L_{(j);i} = \alpha w \beta_{;i} (\alpha b_j - \beta \alpha_{(j)}) + L_{\beta} b_{j;i}.$$

From (3.3) and (3.6) we have

(3.7)
$$L_{1(2)} - L_{2(1)} = \alpha w \{ \beta_{;1} (\alpha b_2 - \beta \alpha_{(2)}) - \beta_{;2} (\alpha b_1 - \beta \alpha_{(1)}) \} - L_{\beta} (b_{1;2} - L_{2;1}) + (y^1 y_{0,0}^2 - y^2 y_{0,0}^1) W.$$

If we put $y_{:0}^i = \dot{y}^i + \gamma_{00}^i$, we get

$$(3.8) y^1 \dot{y}^2 - y^2 \dot{y}^1 = y^1 y_{\cdot 0}^2 - y^2 y_{\cdot 0}^1 - (y^1 \gamma_{0 0}^2 - y^2 \gamma_{0 0}^1).$$

Substituting (3.7) and (3.8) in (2.4), we have

$$(3.9) \quad \alpha w \left\{ \beta_{;1}(\alpha b_2 - \beta \alpha_{(2)}) - \beta_{;2}(\alpha b_1 - \beta \alpha_{(1)}) \right\} - L_{\beta} \left(\frac{\partial b_1}{\partial x^2} - \frac{\partial b_2}{\partial x^1} \right) + \left(y^1 y_{;0}^2 - y^2 y_{;0}^1 \right) W,$$

where $\beta_{;i} = b_{r;i}y^r$. According to §2 of [6], the relation of W, W_r and w is written as follows:

$$(3.10) W = (L_{\alpha} + \alpha w \gamma^2)W_r$$

where
$$\gamma^2 = b^2 \alpha^2 - \beta^2$$
 and $b^2 = a^{ij} b_i b_i$

Therefore (3.9) is expressed as follows:

$$(3.11) \quad (L_{\alpha} + \alpha w \gamma^{2}) (y^{1} y_{; 0}^{2} - y^{2} y_{; 0}^{1}) W_{r} - L_{\beta} \left(\frac{\partial b_{1}}{\partial x^{2}} - \frac{\partial b_{2}}{\partial x^{1}} \right) \\ + \alpha w \{ b_{0:1} (\alpha b_{2} - \beta \alpha_{(2)}) - b_{0:2} (\alpha b_{1} - \beta \alpha_{(1)}) \} = 0.$$

Thus we have the following

Theorem 3.1 In a two-dimensional Finsler space F^2 with an (α, β) – metric, the differential equation of a geodesic is given by (3.11).

Suppose that α be positive – definite. Then we may refer to an isothermal coordinate system $(x^i) = (x, y)([5])$ such that

$$\alpha = aE$$
 , $a = a(x, y) > 0$, $E = \sqrt{\dot{x}^2 + \dot{y}^2}$,

that is, $a_{11}=a_{22}=a^2$, $a_{12}=0$ and $(y^1,y^2)=(\dot{x},\dot{y})$. From $\alpha^2=a_{ij}(x)y^iy^j$ we get $\alpha\alpha_{(i)(j)}=a_{ij}-a_{ir}a_{js}y^ry^s/\alpha^2$. Therefore we have $\alpha\alpha_{(1)(1)}=(a\dot{y}/E)^2$. and $W_r=a/E^3$ Furthermore the Christoffel symbols are given by

$$-E^{3}L_{\beta}(b_{1y}-b_{2x})-E^{3}a^{2}w(b_{1}\dot{y}-b_{2}\dot{x})b_{0;0}=0$$

where

(3.17)
$$b_{0;0} = b_r s y^r y^s = (b_{1x} \dot{x} + b_{1y} \dot{y}) \dot{x} + (b_{2x} \dot{x} + b_{2y} \dot{y})$$

$$+ \frac{1}{a} \{ (\dot{x}^2 + \dot{y}^2) (a_x b_1 + a_y b_2) - 2(b_1 \dot{x} + b_2 \dot{y}) (a_x \dot{x} + a_y \dot{y}) \}$$

 $b_{ix} = \frac{\partial b_i}{\partial x}$, and $b_{iy} = \frac{\partial b_i}{\partial y}$ thus we have the following where

Theorem 3.2: In a two dimensional Finsler space F^2 with an (α, β) - metric, if we refer to an isothermal coordinate system (x, y) such that $\alpha = \alpha E$, then the differential equation of a geodesic is given by (3.16) and (3.17).

4. Equation of Geodesics in a two dimensional Finsler with special (α, β) -metric $L = \alpha + \alpha$

The
$$(\alpha, \beta)$$
 -metric $L(\alpha, \beta) = \alpha + \beta + \frac{\beta^2}{\alpha - \beta}$ is called special (α, β) metric.

$$\begin{cases}
L_{\alpha} = 1 - \frac{\beta^2}{(\alpha - \beta)^2}, L_{\alpha\alpha} = \frac{2\beta^2}{(\alpha - \beta)^3}, L_{\alpha\beta} = -\frac{2\alpha\beta}{(\alpha - \beta)^3}, L_{\beta\beta} = \frac{2\alpha^2}{(\alpha - \beta)^3} \\
w = \frac{L_{\alpha\alpha}}{\beta^2} = -\frac{L_{\alpha\beta}}{\alpha\beta} = \frac{L_{\beta\beta}}{\alpha^2} = \frac{2}{(\alpha - \beta)^3}
\end{cases}$$

Substituting (4.1) in (3.16), we obtain the differential equation of a geodesic in an isothermal coordinate system (x, y) with respect to α as follows:

$$(4.2) \{\alpha(\alpha - \beta)(\alpha - 2\beta) + 2\alpha(b_1\dot{y} - b_2\dot{x})^2\}\{\alpha(\dot{x}\ddot{y} - \dot{y}\ddot{x}) + E^2(a_x\dot{y} - a_y\dot{x})\}$$

$$-E^3\alpha^2(\alpha - \beta)(b_{1y} - b_{2x}) - 2E^3\alpha^2(b_1\dot{y} - b_2\dot{x})b_{0\cdot 0} = 0$$

If the particular t of curve C is chosen x of (x, y), then $\dot{x} = 1$, $\dot{y} = y'$, $\ddot{x} = 0$, $\ddot{y} = 0$ $v'' \cdot \sqrt{1 + (v')^2}$.

$$(4.3) \left\{ \alpha(\alpha - \beta)(\alpha - 2\beta) + 2\alpha(b_1y' - b_2)^2 \right\} \left\{ ay'' + (1 + (y')^2) \left(a_xy' - a_y \right) \right\}$$

$$-\alpha(1 + (y')^2) \left\{ (1 + (y')^2) \alpha(\alpha - \beta) \left(b_{1y} - b_{2x} \right) - 2\alpha(b_1y' - b_2) b_{0;0}^* \right\} = 0$$

$$(4.4) b_{0;0}^* = (b_{1x} + b_{1y}y') + (b_{2x} + b_{2y}y')y'$$

$$+ \frac{1}{a} \{ (1 + (y')^2) (a_x b_1 + a_y b_2) - 2(b_1 + b_2 y') (a_x + a_y y') \}$$

It seems quite complicated from, but y'' is given as a fractional expression in y'.

Thus we have the following

Theorem 4.1Let F^2 be two-dimensional space with special Finsler metric. If we refer to a local coordinate system (x, y) with respect to α , then the differential equation of a geodesic y = y(x) of F^2 is of the form

References

- M. Matsumoto and H. S. Park, Equations of geodesics in two-dimensional Finsler spaces with (α, β)metric, Rev. Appl., (1997).787-793. Rout". Pures.
- [2]: M. Matsumoto and H. S. Park, Equations of geodesics in two-declensional Finsler spaces with (α, β) metric-ll, Tensor, N. S., (1998),89-93.
- [3]: Hong-Suh Park and IL-Yong Lee, Equation of geodesics in two-dimensional Finsler space with a generalized Kropina metric, Bull. Korean Math. Soc., 37 (2000), No. 2,7 p.337.
- [4]: P.L.Antonelli, R.S.Ingarden and M.Matsumoto, the Theory of Sprays and Finsler spaces with Applications in Physics and Biology, Kluwer Acad. Publ., Dordrecht, Boston, London, 1993.
- [5]: M. Hashiguchi, S. Hōjō and M. Matsumoto, On Landsberg spaces of two dimensions with (α, β) -metric, J. Korean Math. Soc. 10 (1973), 17-26.
- [6]: M. Kitayama, M. Azuma and M.Matsumoto, On Finsler spaces with(α,β)metric Regularity, geodesics and the main scalars, J. Hokkaido Univ. Education, Sect.II A 46 (1995), 1-10.
- [7]: M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Reports on math- ematical physics 31 (1992), 43-83.
- [8]: M. Matsumoto, Geodesics of two-dimensional Finsler spaces, Mathl. Comput. Modeling 20(1994), 1-23.
- [9] : T N Pandey and B K Tripathi, Two Dimensional Finsler Space Whose Geodesics Constitute a Family of Sine curves and Hypocycloid, Bulletin of Calcutta Mathematical Society, vol 99(6) (2007), 635-646.
- [10]: T N Pandey and B K Tripathi, The Family Of Cycloid And Tractrix as Geodesics in a Two Dimensional Finsler Space, Journal of International Academy Of Physical Sciences, Vol. 08, 2004, 51-62.
- [11] : T. N. Pandey and B. K. Tripathi : Lands berg spaces of Dimension Two with Matsumoto Metric, Journal of the Tensor Society of India Vol. 24, 2006, 13-21.
